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We give an account of the logical and model theoretic aspects of sheaf theory 
and describe how this formalism leads to a new interpretation of the role of 
sheaves in the twistor description of massless fields. 

1. I N T R O D U C T I O N  

The characterization of massless fields on complexified Minkowski 
space, in terms of the sheaf cohomology of twistor space, is described in 
Eastwood, Penrose, Wells (1981), which also contains an extensive bibliog- 
raphy on the subject. The use of sheaf theory in the description is novel 
among the techniques of mathematical physics and arises from a nonlocal 
representation of physical properties on twistor space, in contrast to the 
conventional description in terms of local differential equations on space- 
time. This departure is inspired to a certain extent by problems with the 
modeling of the space-time continuum. The usual model based on the real 
line has a great deal of local structure, including a structure of points which 
can be resolved with infinite precision. This model resulted from idealizing 
observations in classical physics. More recent developments in quantum 
mechanics, field theories, and attempts at quantizing gravity encounter 
difficulties which seem to be related to this classically idealized small-scale 
structure and thus it is of great interest to consider theories which represent 
the continuum in an essentially different way. 

~Most of this work was carded out while the author was Junior Lecturer in Mathematics, 
University of Oxford, United Kingdom. 

2Present address: Department of Mathematics, University of Sydney, N.S.W. 2006, Australia. 
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Sheaf theory was originally developed in the context of algebraic 
geometry as a tool for passing from local to global properties of spaces, and 
it is this aspect of sheaves that is used in the work of Eastwood, Penrose, 
Wells (1981). More recently it was discovered that sheaves also have 
important applications in logic and model theory: the category of all 
sheaves on a fixed topological space can be viewed as a model for intuition- 
istic set theory. This aspect of sheaves was first developed by F. W. Lawvere 
(1975, 1976) in the early 1970s and a comprehensive account may be found 
in the book by P. Johnstone (1977). It is the purpose of this work to 
investigate the role of sheaves in twistor theory from this set theoretic point 
of view. One of the most interesting aspects of the sheaf model formalism is 
that it provides a framework in which a sheaf can be viewed as a model of a 
space which does not have a local structure of points but a structure which 
is "intrinsically continuous" in a precise mathematical  sense (cf. Lawvere, 
1975, 1976): It is hoped that this mathematical development may shed light 
on the physical basis of twistor theory and its unusual representation of the 
continuum. 

Let X be a (fixed) topological space and O p ( X )  the lattice of its open 
sets ordered by inclusions. 

Definition 1.1. A sheaf $ of sets over X is an assignment of a set S (U)  
to each nonempty open set U _ X and a map 

PUV 
s(u) s(v) 

whenever U ~ V. This structure is required to satisfy the following: 
Pwu 

(i) If U c V c W when S ( W )  --* S (U)  is the same map as the corn- 

posite 

PWV PVU s(w) s(v) s(u) 

(ii) Let (U,) be any open cover of U and let U u = U , n ~  be the 
intersections. Let a~ ~ $(U,) be a collection of elements such that 

pv, u,, ( oi ) = pu, u,, ( oj ) for all i, j 

Then there is a unique o ~ S(U)  with o r = Puu(O) 

We often refer to the elements o ~ S(U)  as " the  elements of S over U "  
or " the  sections of S over U." Puv is called the restriction map from U to 
the smaller open set V. Condition (ii) then states that if we have a collection 
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of sections of $ over an open cover of U, which agree when restricted to the 
overlaps, then they can be patched together in a unique way to give a single 
section over U. 

We will view a sheaf $ as a set whose elements are all the sections 
o ~ $ (U)  over all the open sets. The difference from the usual notion of a 
set is that here we have an extra internal structure of a grading of the 
elements by the lattice Op(X) .  Heuristically we think of the open sets as 
measures of definability and the elements in $ ( U )  are the members of $ 
defined to the extent U. The larger the open set, the greater the definability 
so that the completely defined elements are those in $ (X) ,  i.e., the global 
sections. The restriction maps Our can then be thought of as relating an 
element o ~ $ ( U )  to the same element with part  of its definability ignored, 
hence having a weaker measure V c U of definability. Condition (ii) in 
Definition 1.1 may be interpreted as allowing the construction or definition 
of elements by consolidating weaker but compatible definitions. 3 

It is natural to require that maps between these structures preserve the 
O p ( X )  grading of elements: 

Definition 1.2. Let $ and T be sheaves over X. A sheaf map ~: $ --, T is 
a collection of set maps r $ ( U )  --+ T(U)  such that whenever V ___ U, the 
following diagram commutes: 

s(u) T(U) 
Our J, ~ Our 
S(V) m~v)T(V) 

We denote by Sh(X) the category of all sheaves and sheaf maps over X. It is 
shown in Sections 2 and 3 that Sh(X) has a rich enough internal structure 
to allow analogs of all the familiar constructions of mathematics which we 
usually carry out with sets, e.g., the formation of products, unions, construc- 
tion of the set of all maps between two sets, the set of all subsets of a set. 
This means that in Sh(X) we can develop analogs of most familiar mathe- 
matical definitions and theories like the notions of topology, vector spaces, 
partial differentiation, etc. 

The category of sets appears as a special case of the sheaf formalism 
obtained by taking X as the one-element topological space. From an 
objective mathematical  point of view, all the universes, Sh(X), are equally 
good "arenas for mathematical constructions" but historically only the use 

3The Op(X) grading has also been given other intuitive interpretations and derives originally 
from the semantics of intuitionistic logic developed by E. Beth (1947) and S. Kripke (1965). 
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of sets was recognized. In the category of sets every object is fully char- 
acterized by its (completely defined) point elements. For mathematical 
physics we may not want this feature (particularly in the representation of 
the continuum) and thus be lead to consider some other category Sh(X) 
with X determined by further physical information about the small-scale 
structure of the continuum. In Sh(X) the pointlike elements of a sheaf S are 
its global sections and a general sheaf is far from being characterized by 
these, possibly having no global sections at all. 

For later reference, we will give a statement of the main twistorial 
results about massless fields. A complete account is given in Eastwood, 
Penrose, Wells (1981) or in Wells (1979). 

Definition 1.3. (i) A massless field (on an open subset of complexified 
Minkowski space) of helicity n/2 (n = 1,2 . . . .  ) is a holomorphic symmetric 
spinor field q0 A ' u  with n indices satisfying 

XT AA,~A""L'= 0 

(ii) A massless field of helicity - n / 2  (n = 1,2 . . . .  ) is a holomorphic spinor 
field q0AB...LtWX,I...IL,Z, l with n symmetric unprimed indices and (n - 1 )  pairs 
of skew primed indices satisfying 

XTp,IpCpAIB...L[B,X,1...IL,Z, l = 0 

(iii) A potential for an - n/2  helicity massless field is a spinor field ~kAW...L' 
with an unprimed index and (n - 1 )  symmetric primed indices satisfying 

V i p( p,t~ Al B,)... L, ~-- 0 

(here we skew over PA and symmetrize over P'B'). 

Usually the one-index spin spaces are two dimensional and hence the 
spaces with a pair of skewed indices are one dimensional (spanned by a 
skew spinor normally denoted e). Thus, defining V AA' as eA'WEABVBW the 
definition 1.3 (ii) of negative helicity massless fields becomes equivalent to 
the more usual 

vAA '~A . . .L  = 0 

However, later we will relax the condition of two dimensionality of the 
primed spin space and it will be necessary to use the more cumbersome 
definition 1.3 (ii) which we adopt here at the outset. 
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Notat ion 1.4. Let $iii denote the spin space with a general index 
structure. We define the following sheaves on complexified Minkowski 
space: 

S il sheaf of holomorphic $ iii valued functions 
Z A'...L' sheaf of positive helicity massless fields 
ZA...L[B,X,I.,.IL,Z, 1 sheaf of negative helicity massless fields 
PA B'...L' sheaf of potentials for negative helicity fields 
TA,.../_, sheaf of holomorphic symmetric fields ~A'...L" satisfying 

Vx(x,qOA,. L ')  = O. 

The basic structural space-time properties of massless fields are expressed in 
the form of two exact sequences, the first being a resolution of the 
differential operator appearing in the massless field equations and the 
second is the expression of massless fields as potentials modulo a gauge 
freedom. 

Theorem 1.3. The following sequences are exact: 

"~'AA' S(AB, ..L, ) XT S'IB (a )  0 --, Z A ' ' ' ' L ' ' - '  S ~A''''L'~ - '  ._, ~(C'. . .L ' )  __, 0 "-'[ABI 

VA(B" V(BIX .... XT(I.[Z" 
(b)  0 --, T c . . . u ' - ,  S(c'. . .u~ --" PAB'...L' --" 

ZA...L[S,X,I...tL,Z, 1 ~ 0 

[Here, there are n -  2 indices C ' . . . L '  and the map P---, Z is the 
application of ( n - 1 )  x7 operations followed by symmetrization 
over all unprimed indices and skew symmetrization over pairs of 
primed indices as indicated on the index structure of Z.] 

Turning now to the twistor description of massless fields, let 
P T  § be the part of projective twistor space having positive twistor 
norm. We denote by T(n) the sheaf of holomorphic twistor func- 
tions homogeneous of degree n. Let M § denote the future tube of 
complexified Minkowski space. 

Theorem 1.6. For any n, there is a natural one to one correspon- 
dence between (i) helicity n / 2  massless fields on M + and (ii) the 
sheaf cohomology group H x ( P T + , T ( -  n -2)) .  

Let F + =  M + •  SA" be the primed spin bundle on M + and, following the 
usual twistor notation, introduce coordinates (x AA', ~rA, ) on F § The sheaf 
T(n) may be identified with the sheaf [also denoted T(n)] on F § of 
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functions f(xAA',~rA,) homogeneous of degree n in ~r A, and satisfying 
*rA'XTAA,f=O. Theorem 1.6 may then be derived by developing the 
cohomology of the following exact sequence on F § 

Sequence 1.7: 

0 ~T(n) F(n) ~''v''' '~"' " ~ FA(n+I ) ~--~"'F(n+2)~0 

Here F(n) is the sheaf of all holomorphic functions on F § homogeneous of 
degree n in IrA,, and F A (n) is the sheaf of SA valued functions homogeneous 
of degree n in *rA,. 

The main point of this paper is to show that the sequences 1.5 (a) and 
(b) on the one hand (giving the standard space-time description of massless 
fields) and the sequence 1.7 on the other hand (leading to the twistor 
description) are two different models of the same mathematical theory 
interpreted in two different categories of sheaves (apart from some minor 
modifications). In other words, the novelty of the twistor description is 
attributed here, not to changing our description of massless fields, but 
rather to working with the same theory of massless fields in a more exotic 
category than the category of sets. 

In Section 2 we set down the basics of model theory distinguishing 
carefully between the notion of a theory and the notion of its models 
obtained by interpreting the axioms of the theory in concrete mathematical 
structures according to precise given rules of interpretation. In Section 3 we 
describe explicitly the rules of interpretation and satisfaction for sheaf 
models. Sections 2 and 3 together are meant to provide an essentially 
self-contained exposition of the theory of sheaf models, since this is un- 
familiar in the literature of mathematical physics. Section 4 describes some 
examples of mathematical constructions carried out in sheaf models which 
are required later for the interpretation of the theory of massless fields. In 
Section 5 we set up a language and axioms for the theory of massless fields, 
in a form suitable for interpretation in sheaf categories. Finally Section 6 
describes a sheaf model of this theory and it is shown that this model is 
closely related to the twistor description of massless fields. 

2. MODEL THEORY 

It will be of central importance to distinguish between a theory (axioms, 
statements) and models of a theory (actual mathematical structures, e.g., sets 
and set maps in which the axioms are interpreted). We clarify this with a 
familiar example. The notion of a group (G,/~, r, e) is defined axiomatically 
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by the following statements: 

VxVyVz(l~(x, l~(y, z)) = l~(lx(x, y), z)) 

Vx (/x(x, r(x)) = l~(r(x), x) = e) 

Vx(l~(x,e) =/.t(e, x)=x) 

Here tt is the multiplication and ~" is a function giving inverses. The theory 
of groups is the collection of all statements that can be derived from these 
axioms using the laws of logic. (Here, a law of logic is simply a prescription 
for constructing a new true statement from given statements which are 
already regarded as being true). Thus, a theory consists of formal statements 
written in a language and makes no reference to concrete mathematical 
structures. 

A model for the theory of groups (in the category of sets_) is a set (~ and 
maps/2: G x G ~ t~, ,~: G---, G and a selected element ~ ~ G which satisfy 
the above axioms. This notion of model requires rules of interpretation, 
specifying how to associate concrete mathematical objects to the symbols of 
the language, and also rules of satisfaction specifying when a statement 
written in the language is considered to hold, or be true, in a given 
interpretational structure. Thus, in the above example, the symbol/~ in the 
language is interpreted by the set map /2 and any such interpretation 
satisfies the associative law if certain set theoretic constructions involving 
and/2 hold. 

These notions of theories and models embody a widely used basis for 
mathematics but this is not the only possible foundation. It is not clear, for 
example, that a purely geometrical approach or a constructivist approach, 
can be forced into this mold. Both of these perhaps have a more Platonistic 
flavor, in which ideal mathematical objects exist, and there is no doubt 
about what the "correct" model of any notion is, so the distinction between 
the model and the theory is unnecessary. 

In constructing mathematical models in physics the distinction between 
theories and their models is rarely made even though the physical content is 
often abstracted in terms of statements of properties, i.e., a theory. In 
general, many inequivalent models exist, (even just in the category of sets) 
and the particular one chosen is determined by constructs of existing 
physical theories and partly by historical precedents. The choice of some 
particular model is a strong assumption (often unacknowledged) in the 
theory since it can largely determine its mathematical form. 

Perhaps the most interesting example of this is the use of the set of real 
numbers to model the outcomes of measurements (e.g., of reading a pointer 
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on a scale). A realistic analysis of  the properties of  these outcomes,  taking 
into account  accuracy and definability, is very complex and the real number  
system satisfies most  requirements only in an idealized way. However,  even 
in the category of  sets, there are many  other  non- isomorphic  models also 
satisfying all these requirements. F rom a mathematical  viewpoint, a real 
number  is an infinitely complex object and has many extra special proper-  
ties (especially on the small scale) which cannot  be justified from physics. 
These extra nonphysical  properties (which differ for different models) play 
an impor tant  role in the mathematical  development  of  the physical theory 
and hence the choice of a part icular model is important .  

The mathematical  discipline of  model  theory is a useful tool for 
investigating the dependence of  a physical theory and its predictions on the 
choice of  part icular  mathematical  models and also for investigating the 
variety of  available models. To state the basic model  theoretic rules of  
interpretat ion and satisfaction it is necessary to be precise about  the 
language used to formulate  the axioms. For  our  purposes it will be sufficient 
to use a first-order, many  sorted language. 

D e f i n i t i o n  2.1. A first-order many  sorted language L is a collection of  
symbols of  the kind shown in Table I. Using these symbols we construct  

TABLEI 

Symbol Explanatory Remarks 

A collection of symbols s~ called 
sorts 

A collection of free variables 
xj for each sort s 

Sorted relation 
symbols, R 

Sorted function 
symbols, f 

Individual constant symbols of 
sort s 

The logical symbols 
v (disjunction) & (conjunction) 

(negation) ~ (implication) 
3 (existential quantifier) 
~' (universal quantifier) 
( , )  (brackets) 

These will denote (domains of) different 
kinds of variables 

These will be used for building up expressions. 

R( x 1 . . . . .  xn) will denote a relation 
between the variables of the designated 
sorts. 

f ( x  I ..... x,,) of sort s denotes a 
function of the variables of the 
designated sorts taking values in sorts s. 

These denote special named elements of 
s o r t  S. 

These are used for constructing statements. 
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( induct ively)  the following.  

Terms:  

Fo rmu lae :  

Al l  free var iable  symbols  and  cons tan t  symbols  are terms. If  

f ( x  1 . . . . .  x , )  is a funct ion symbol  of  sort  s and  t 1 . . . . .  t o are 
terms of  the sorts of  x 1 . . . . .  x o, then f ( q  . . . . .  to) is a term of  
sort  s. Al l  terms are  ob t a ined  in this way. 
A t o m i c  formulas  are  express ions  of  the form R(q . . . . .  to) 
where  R is a re la t ion  symbol  and t~ . . . . .  t o are terms of  the 
a p p r o p r i a t e  sorts. Genera l  fo rmulas  of  greater  complexi ty ,  are 
bui l t  up f rom a tomic  formulas  using the logical  symbols  in the 
fami l ia r  ways  [the rules are wr i t ten  out  in Chang  and Keis ler  
(1973)]. 

In  the example  of  groups,  G is a sort  symbol ,  = a two-place  rela t ion,  and  
the mul t ip l i ca t ion  # is a two-place  funct ion  symbol  of sort  G. e is a cons tan t  
symbo l  and  �9 a funct ion  symbol ,  bo th  of  sort  G. 

W e  inc lude  some rules for cons t ruc t ing  new sorts  out  of given ones. 
G i v e n  sorts  s~, s 2 we can  cons t ruc t  the p roduc t  sort  s 1 • s 2. A fo rmula  
r x2)  wi th  var iables  Xl, X 2 of  sorts  s l ,  s 2, respect ively,  m a y  then be 
regarded  as ~o(x3), where  x 3 has sort  s 1 x s 2. We  also al low the cons t ruc t ion  
of  " s u b s o r t s " :  if tp(x)  is a formula ,  x of  sort  s, then we can cons t ruc t  a new 
sort  deno t ed  { x[fp(x)} which represents  the d o m a i n  of  values x of  sort  s for 
which  cp(x) holds.  I f  s I and  s 2 are sorts  we have the cons t ruc t ion  of  the 
func t ion  space  sort  deno ted  s~', represent ing  the sort  of  all maps  f rom s~ to 
s 2. To express  their  in t ended  meanings ,  these cons t ruc t ions  are no rma l ly  
subjec ted  to var ious  ax ioms [which m a y  be found  in Johns tone  (1977)]. 
Somet imes  it is useful  in quant i f i ed  fo rmulas  to make  the sort  of a var iable  
explici t .  W e  will use the fol lowing no ta t ion :  the fo rmula  Vxcp(x)  with x of 
sor t  s may  be  wr i t t en  as (Vx ~ s)(cp(x)). " V x  ~ s "  is read  as " f o r  all x of  
sor t  s "; s imi lar ly  for 3x  ~ s. 

A n  in t e rp re t a t ion  M of  the  l anguage  L in the ca tegory  of  sets is an 
ass ignment ,  Tab le  II .  The  last  c lause  in this tab le  gives the in te rp re ta t ion  of 
a tomic  formulas .  N o n a t o m i c  fo rmulas  are  bui l t  up out  of  these as follows. 
Let  q0(x 1 . . . . .  x , )  and  ~ ( x  1 . . . . .  x , )  be  fo rmulas  with free var iables  of  sorts  

s 1 . . . . .  s o so M(q0) and  M ( f f )  are subsets  of  M ( s l ) •  . . .  • M(s,). Then  we 

set 

M( ep&d/ ) = M( cp )fq M( ~ ) 

M( q~ V ~ ) = M( 9~ )U M( r ) 

M(~p = ~k) = M ( ~ k ) U  M({p)  ( - -  deno tes  complemen t )  
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M ( ~ )  = M ( ~ )  

M ( 3 x l c o ( x  1 . . . . .  x . ) )  = { ( a  2 . . . . .  a . )  �9 M ( s 2 ) x  �9 �9 �9 x M ( s . ) l  

t h e r e  is a n  a I �9 M ( S l )  w i t h  

( a  1, a 2 . . . . .  a , , )  �9 m ( q 0 ) }  

M ( V x t ~ p ( x ,  . . . . .  x . ) )  = { ( a  2 . . . . .  a . )  �9 M ( s 2 ) •  X M ( s . )  I 

fo r  a l l  a x �9 M ( s x )  

( a l ,  a 2 . . . . .  a . )  �9 m ( r p ) }  

U s i n g  t h e s e  ru les  we  c a n  c o n s t r u c t  t he  i n t e r p r e t a t i o n  o f  a n y  f o r m u l a  o r  

t e rm .  N o t e  t h a t  i f  cp h a s  n o  f ree  v a r i a b l e s  (i.e., is a p r o p o s i t i o n  o r  s e n t e n c e )  

t h e n  M(~0)  is a s u b s e t  o f  t he  p r o d u c t  o f  n o  f a c t o r s  w h i c h  c a n  b e  i d e n t i f i e d  

as  t h e  o n e - e l e m e n t  se t  1 . 1  h a s  e x a c t l y  t w o  s u b s e t s  w h i c h  a r e  c o n v e n t i o n a l l y  

c a l l e d  " t r u e "  a n d  " f a l s e " .  T h e  a b o v e  i n t e r p r e t a t i o n s  o f  &, v , ~  o n  t h e s e  

t r u t h  v a l u e s  a r e  t h e  u s u a l  B o o l e a n  a l g e b r a  o p e r a t i o n s  o n  t h e  s u b s e t s  o f  1. 

T h e  i n t e r p r e t a t i o n  o f  t he  p r o d u c t  so r t  s 1 • s 2 is s i m p l y  t he  C a r t e s i a n  se t  

p r o d u c t  M ( s l ) •  M ( s 2 )  a n d  fo r  x of  s o r t  s, ( x l q 0 ( x ) }  is i n t e r p r e t e d  b y  t h e  

TABLE II 

Symbol Interpretation M 

A sort s 

A relation symbol R ( x  I . . . . .  x . )  
(x  i of sort si) 

A function symbolf(x I . . . . .  x . )  of 
sort s (x i of sort s~ ) 

An individual constant c 
of sort s 

A variable x of sort s 

A set M ( s )  (the domain of sort s) 

A subset M ( R )  of M ( s l ) •  . .  �9 • M ( s . )  
(i.e., the n tuples of elements for which 
the relation holds) 

A set map M ( f ) :  M(s l ) •  . . .  • M ( s , )  --, M ( s )  

An element M(c)  e M(s), 
i.e., a map 1 --, M(s)  

The identity map M ( s )  --* M ( s )  

Then, inductively, for terms t 1 .... , t .  of sorts sl , . . .  ,s.  with 
free variables among sorts st,. V ,s j: 

f ( t  I . . . . .  t . )  of sort s M ( f ( t  1 . . . . .  tn)): M(s l ) •  . . .  • M(sj)---* M ( s )  
obtained by composing the interpretations 
of the terms t i with the 
interpretation o f f  

R ( t  t . . . . .  t . )  M ( R ( t  1 . . . . .  to) ) is the subset of 
M ( s t ) x  - . .  • M(s j )  of allj-tuples such that 
the relation R holds between the terms 
t 1 . . . . .  t .  evaluated on thej-tuple 
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subset M(9~)_c M(s). M(s]') is the set M(s2) M(s,) of all set maps from 
M(sx) to M(s2). It is fortuitous that the collection of all maps between 
M(s 1) and M(s2) is again a set. Later, for sheaves, the collection of all sheaf 
maps between two sheaves is also a set, and not a sheaf, so the interpreta- 
tion of function space sorts is less obvious there. 

Finally, the rule of satisfaction is simply that " the  formula q0(xl . . . . .  x , )  
is true under the interpretation M "  or " M  is a model of 9~" if M(q~) _ M(s~ 
x . . .  X s , )  is the whole of M(s i x . . .  xs,) .  

These rules are so natural that outside treatises on model theory they 
are rarely stated, although used in practically every textbook. We state them 
here because the rules of interpretation in sheaf categories (given in the next 
section) which look more complicated, are, in fact, direct generalizations of 
the above rules. 

3. SHEAF MODELS 

The category Sh(X) of sheaves and sheaf maps over a topological space 
X has been defined in Section 1. Before listing the interpretation rules in 
this category, we need to describe the sheaf analogs of certain constructions 
with sets. The product S x T  of sheaves S and T is defined by ( S x T ) ( U ) =  
S ( U ) x T ( U ) ,  i.e., we just form the Cartesian product of section over each 
open set U. The analog of the one element set, the sheaf denoted 1, is 
defined by I ( U ) =  (*}, i.e., has precisely one section over each open set. As 
in sets, this is also the product of no factors. The function space construc- 
tion T s is defined as follows. Let Slu and Tlv denote the sheaves S and T 
restricted to the open set U [so S[u is in Sh(U)]. Then for any open U, 
T S ( u )  is defined to be the set of sheaf maps from Slu to TIu. This 
definition is in fact uniquely determined (cf. Johnstone, 1977) by the 
requirement that sheaf maps S x R ~ T be in one-to-one correspondence 
with sheaf maps R ~ T s (for all sheaves R). This requirement embodies the 
intended meaning of T s as a function space. A sheaf S '  is a subsheaf of a 
sheaf S (analog of subset) if S ' ( U ) _ c S ( U )  for all open sets U. The 
collection of all subsheaves of S is partially ordered by an inclusion relation 
~< defined by S'~< S"  iff S ' (U)_c S " ( U )  for all U. If S '  and S "  are both 
subsheaves of S the intersection S'r  S "  is defined by ( S ' N  S " ) (U )  = S ' (U)  
r S " ( U  ). Unions are more complicated since U ~ S ' (U ) U S " (U  ) does not, 
in general, form a sheaf [it fails to satisfy the completeness condition (ii) of 
Definition 1.1]. Thus we define S ' U S "  as the smallest subsheaf of S 
containing both S '  and S".  An explicit description of S ' U S "  is the 
following: ( S 'U  S " ) ( U)  contains all those sections o of S over U such that 
for some open cover U/of U, puv,(a) is either in S'(Ut) or S"(Ui), i.e., o is 
locally in S" or S". 
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In summary, the constructions of 1, products, subobjects, and intersec- 
tions, are the same as those in sets, but carried out separately over each 
open set. The construction of function spaces and unions requires a notion 
of localization. We have not mentioned the restriction maps in the above 
construction since they are clear in each case. 

Definition 3.1. The rules for the interpretation of terms and formulas 
written in a first-order many sorted language are shown in Table III. 

The interpretation of sort constructions is as follows. Product sorts are 
interpreted by the corresponding sheaf products. { x[cp(x)} for x of sort s is 
interpreted by the subsheaf M(~p) of M(s) and the sort s~, is interpreted by 
M(s2) M~',I. Finally, the rule of satisfaction is that " M  is a model of the 
formula tp(x a . . . . .  x , ) "  if M(qo)_c M ( s l ) x - - - X  M(s,,) is the whole of 
M(s1)X - ' -  X M(s,). 

The interpretation of a formula q)(x~ . . . . .  x,,) is always a subsheaf of 
M(s l )x  . . .  X M(s,). Thus if ~0 has no free variables (i.e., is a sentence or 
proposition) then M(cp) is a subsheaf of 1. Any subsheaf S of 1 has S(U) 
either {*} or the empty set ~ ,  for each open U c X. Also if S(U) = {*} 
and U'c_ U then $(U' )  must also be {*} to make the restriction maps 
possible. The upshot of this is that S is completely characterized by the 
largest open set U over which S ( U ) =  {*), i.e., there is a one-to-one 
correspondence between open subsets U c_ X and subsheaves of 1. Hence 
we may regard sentences as being interpreted by open sets of X, i.e., the 
open sets play the role of the truth values. From this point of view, if ~p and 
qJ are interpreted by the open sets U and V, respectively, then logical 
combinations are interpreted as follows: 

qo&r U n V  
cpvr U u V  

--,~p : interior (complement ( U )) 

cp = q,: interior (complement (U)tA V) 

These operations with open sets correspond to the structure of a Heyting 
algebra (cf. Fourman and Scott, 1979). In contrast, in Section 2 the 
interpretation of sentences in sets formed a Boolean algebra under the 
logical operations. In fact the set of all subsets of a set always has a Boolean 
algebra structure, whereas the set of all subsheaves of a sheaf always has a 
natural Heyting algebra structure. The essential difference between Heyting 
and Boolean algebras is the behavior of negation. According to the above 
rules, the interpretations of ~ qo and r in sheaf models are not, in general, 
the same. This shows that the logic of sheaves cannot be classical logic 
(classically --,--,q0 is equivalent to q0 so their interpretations would have to be 



T A B L E  I I I  

Cons t ruc t ions  in the language  In te rp re ta t ion  M in Sh(X)  

A sort  s 

A re la t ion symbol  R ( x  I . . . . .  x . )  
(x ,  of sort  s~) 

A funct ion s y m b o l f ( x  t . . . . .  x . )  

of sort  s ( x, of sor t  s~) 

A cons tan t  c of sor t  s 

A free var iable  x of sor t  s 

f (  t I . . . . .  t,,) of sor t  s 

R ( t  1 . . . . .  t,,) 

~v~ 

--,eg 

V x l ~ ( x  t . . . . .  x . )  

3 x l ~ ( x l  . . . . .  x , )  

M ( s )  is a sheaf  S 

A subsheaf  M( R ) of the p roduc t  sheaf  

M ( s l ) X  . . .  X M(s , , )  

A sheaf  map  
M(/') 

m ( s l ) X  . . .  X M ( s . )  --* M ( s )  

A global  sect ion M ( c )  of M ( s ) .  i.e., a 
sheaf  m a p  1 --* M ( s )  

The ident i ty  map  

M ( s )  -* M ( s )  

The induc t iv i ty  for te rms t I . . . . .  t,, of sor ts  s I . . . . .  s .  wi th  free 

var iab les  a m o n g  sor ts  s~ . . . . .  s j: 

A sheaf m a p  M ( s l ) •  . . -  x M ( s j ) - - ,  M ( s )  
ob ta ined  by  c o m p o s i n g  the in te rpre ta t ions  

of the terms t i wi th  the in te rpre ta t ions  

o f f  

M( R ( t I . . . . .  t n )) is the subsheaf  of 
M ( s t ) •  �9 . .  M(s~)  ob ta ined  by  fo rming  the 

inverse image  of M (  R ) c M ( sl  ) X �9 - • M(  s,, ) 
under  the map  

M ( q ) •  - . .  X M ( t n ) : M ( s l ) X  . . .  •  
--* M ( s l ) X  - - .  X M ( s , )  

If  all  free var iables  of qo and q, are a m o n g  x I . . . . .  x,, of sor ts  

S l ,  , . . , S  n then: 

M ( ~ & f f )  = M(q~)n  M(4, )  ( in tersect ion 
of subsheaves  of the sheaf  

M ( S l ) •  " ' "  X M ( s n ) )  

M(q0 v tk) = M ( q 0 ) v  M(q,)  

a ~ M(qo ~ q,)(U) iff for any  U ' c  U 

if o v v . ( O ) ~  M(eg ) (U ' )  then  

Puu,(O) ~ M(~b)(U' )  

o E M ( ~  qo )( U ) iff no res t r ic t ion of o 

be longs  to any  M ( op )( U ") U ' c_ U 

o e ( M ( s 2 ) x  - - .  x M ( s . ) ) ( U )  is in 
M(Vxlg>(x l  . . . . .  x . ) )  iff for every open 

U '  c_ U and  every a ' �9 M ( & )( U ") we 

have  the n- tuple  

(a ' ,  Ouu.(O))  �9 M(ep)(U ') 

o �9 ( M ( s z ) X  . . .  • M ( s , ) ) ( U )  is in 
M ( ] x l ~ ( x  I . . . . .  x#))  iff there is an  open  

cover  G of  U and  e lements  

a i �9 M ( s t ) ( U , )  such that  for each i 

the n- tuple  (a  i, Puu,(O))  �9 M(q,)(U/).  
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the same). It can be shown that sheaf categories respect the laws of 
intuitionistic logic (cf. Fourman and Scott, 1979) in the following sense: If M 
is a model of the formulas rp 1 . . . . .  r and ~p is derivable from q01 . . . . .  %, using 
the laws of intuitionistic logic, then ff is automatically also satisfied under 
the interpretation M. Models in the category of sets (and also sheaves over 
discrete topological spaces) have the extra property of respecting all the laws 
of classical logic. We will not list here the rules of intuitionistic logic (cf. 
Fourman and Scott, 1979, and Dummett,  1977) since they will not be 
required explicitly. Suffice it to say there these rules developed as a 
formalization of the purely constructivist foundation of mathematics 
originated by L. E. J. Brouwer. It is remarkable that the formalization of the 
notion of constructivity (in intuitionistic logic) and of the notion of continu- 
ity both lead to the same notion of topological space. This gives further 
reason to suspect that sheaf models may be useful in the modeling of the 
continuum. 

The quantifier interpretation rules look simpler when stated for 
sentences. The sentence Vx~(x) (x of sort s) is valid in a model M if cp(a) 
holds for all local sections a in the sheaf M(s) ,  i.e., M(~ )  = M(s). 3xg~(x) 
is valid iff there is an open cover U~ of X with sections o i ~ M(s)(U~) with 
o, ~ M(~)(U~), i.e., tp(x) need not be witnessed by a global section of M(s) 
but only locally on a cover of X. When computing interpretations of 
quantified sentences, it is often convenient to work with particular named 
local sections (rather than just global ones which can be interpreted as 
individual constants). Let U ___ X be open. Any interpretation M in Sh(X) 
restricts to an interpretation M" in Sh(U) and a local section a of M(s) over 
U becomes a global section of M '(s) in Sh(U ). We say that M satisfies cp (a)  
in Sh(X) if M '  satisfies ~0(a) in Sh(U) in the previously defined sense. 
Thus, for example, Vx~p(x) is valid in M iff M satisfies ~ ( a )  for all local 
sections a of M(s). 

4. EXAMPLES OF MATHEMATICAL CONS TRU CTIO N S  IN 
SHEAF M O D E L S  

We describe how the rules of Section 3 are used to carry out some basic 
mathematical constructions in Sh(X) which we shall need later. As a first 
example, consider again the group axioms as stated in Section 2. 

Proposition 4.1. In Sh(X) a sheaf G is a model of the group axioms iff 
G is a sheaf of groups (in the usual mathematical sense). 

Proof. Let the sort G be interpreted by the sheaf M(G) = G. Then # and 
are interpreted as sheaf maps M(#) :  G •  ~ G, M(T): G ---, G, and M(e) 
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is a global section of  G. Each of  the three axioms is a sentence of  the form 
Vxq~(x) (with x of  sort G • G • G,G,G, respectively) and this is valid in M 
iff the formula ~ (x )  has M(tp) = G x G • G, G, G, respectively, i.e., for each 
open  set U, M(IQ(U), M ( r ) ( U ) ,  and M(e) restricted to U induce a group 
structure on G(U) ,  i.e., G is a sheaf of  groups. Conversely any sheaf of  
groups gives rise to an interpretat ion in which the axioms are satisfied. 

Remark 4.2. In  this example we have implicitly assumed that the equality 
relation on G is interpreted by M ( = ) _ _ _ G •  having M ( = ) ( U ) =  
((o,  z)l o, ~- ~ G ( U )  and o = ~-}, i.e., equality is interpreted as meaning 
actual equality as sections, over any open set U. We will always use this 
interpretat ion of  equality for all sorts even when not  explicitly mentioned.  

The second example concerns models of  the axioms for a vector space. 
Let  V be an n-dimensional  (real) vector bundle  over X. Let V be the sheaf of  
cont inuous  sections of  V and denote  by K the sheaf of  cont inuous  real-val- 
ued functions on X. 

Remark 4.3. K is a sheaf of  rings and similar to Proposi t ion 4.1, serves as a 
model  for the ring axioms. [It is interesting to remark that the construct ion 
of  the Dedekind reals f rom the natural  numbers  in S h ( X )  gives K.] Let 
Inv (x )  be an abbreviat ion for 3y(x .y  = 1), i.e., Inv(x)  is the predicate that x 
is invertible. The ring axioms can be extended to the axioms for an algebraic 
field by adding Vx(--,(x = 0) ~ Inv(x)) .  A direct calculation shows that K 
does not  satisfy this axiom 4 but  it does satisfy the axiom Vx(-~Inv(x)  ~ x = 
0). These two axioms are classically equivalent but  intuitionistically inequiv- 
alent (cf. Mulvey, 1974). Thus if we use the second form the axiom then K 
becomes an algebraic field in Sh(X) .  Note  that with this definition, a field 
in S h ( X )  is not  a sheaf of  fields. 

For  each open set U, V(U)  is a module  over the ring K(U) with respect 
to the usual pointwise operat ions  of  scalar multiplication and addition. It is 
s t raightforward to verify that V is a vector space over the field K. The local 
triviality of  vector bundles  combines  with the local interpretat ion of the 
existential quantifier  to yield the following result. 

'*This can be seen by the following illustrative case using X= Ii" and interpreting sentences by 
open subsets of X. Let U c X be open and f a real-valued function on U which vanishes only 
at an isolated point x o ~ U. Working in Sh(U) the interpretation o f f  = 0 is the largest open 
subset of U on which fis  zero, i.e., 0 so the interpretation of -~f = 0 is U. The interpretation 
U'  of Inv(f) (using the local interpretation of 3) is the union of all open subsets of U on 
which f is invertible, i.e., U '=  U-(xo} .  Thus the interpretation of --,(f = 0)=  Inv(f) is 
interior [complement (U)U U'] = U - (  x 0 }. Since this is not the whole of U, the universally 
quantified statement cannot be satisfied since this requires the interpretation of ~( f  = O) = 
Inv(f) to be U for all continuous sections f defined on all open sets U. 



82 Jozsa 

Proposition 4.4. Let V and K be as above. Let K be a sort subject to the 
field axioms and A a sort which is a vector space over K. Consider  the 
sentence (" there is a basis of n elements generating A over K ,)5: 

(3b  . . . . .  b .  A ) ( V o  . . . . .  . .  K ) (  o = . bx + " + . , , b , , )  

(4.5) 

Let M be an interpretation with M ( K ) =  K, M ( A ) = V ,  with the obvious 
pointwise operat ions interpreting scalar multiplication and addition. Then 
the sentence (4.5) is valid under  the interpretat ion M. 

Proof. The interpretat ion of  the sentence (4.5) is precisely the local 
triviality condit ion of  vector bundles:  3b 1 . . . . .  b n in (4.5) requires the local 
existence over a cover U~ of  X of  n sections and the rest of  (4.5) says simply 
that these n sections generate, by  linear combinat ions,  all the sections over 
U~, in a unique way. All of  this is guaranteed by the local structure of  V 
being isomorphic to U~ • R n on a cover U r 

R e m a r k  4.6. The  above result shows that vector bundles over X appear  as 
vector spaces, in the intuitionistic set theory of  Sh(X) .  An  easy generaliza- 
tion shows that Proposi t ion 4.4 remains true if X is a C ~ manifold and K is 
the sheaf of  smooth  functions, and V is the sheaf of  smooth  sections of a 
smooth  n-dimensional  vector bundle;  and also if X is a complex manifold  
and K and V are the analogous holomorphic  constructions.  

As a third example we develop some characteristics of  sheaf models of  
topological spaces and cont inuous  functions which will simplify computa-  
tions in Section 6. 

A model  of  a topological space in Sh (X)  is a sheaf S with a collection 
F of  subsheaves 6 (the "open  subsheaves").  F is required to be closed under  
unions, finite intersections, and to contain $ and the empty  subsheaf. A 
sheaf map f :  $x ~ 82 between models of  topological spaces is cont inuous  if 
the inverse image of  every open subsheaf  of  $2 is open in S t.6 

53!xtp(x) is read as "there exists a unique x such that r and is an abbreviation for 
3xrp(x) & VxVy(ep(x) & ~0(y) ~ x = y). This formula is satisfied in an interpretation M iff 
there is an open cover ~ of X and unique sections o i over ~ with o i ~ M(~v)(Ui). 

6A different formulation of topological spaces would require a sheaf of open subsheaves rather 
than just a collection. The formulation used here will be easier to handle computationally and 
sufficient for our purposes. In effect we are considering a topological space as a sort s with 
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An important  class of topological spaces in Sh(X) is constructed from 

bundles over X. Let Y ~ X be a continuous surjection from a topological 

space Y to X. Denote by Y the sheaf of continuous sections of p. Y as an 
object in Sh(X) has a natural topological structure induced from Y: for 
each open U _c Y we have an open subsheaf U c_ u of all local sections of u 
which take values in U. All open subsheaves of Y are of this form. We call 
this topology on Y the bundle topology. There is a simple characterization 
of continuous sheaf maps between bundle topologies: 

Theorem 4.7. (Fourman and Scott, 1979). Let S l and S 2 be bundles 
over X. Let S 2 be a T O space. Denote by S 1 and $2 the sheaves of 
continuous sections of S 1 and S 2 endowed with the bundle topolo- 
gies. Then there is a one-to-one correspondence between (i) con- 
tinuous maps ~: $1 ~ $2 [in Sh(X)] and (ii) continuous bundle 
maps q~: S 1 ~ S 2 (in ordinary topological spaces). Given a bundle 
map cp, the corresponding sheaf map q5 is obtained by evaluating cp 
pointwise along sections, i.e., if Ol(X ) is a section of S 1 over U ___ X 
then 05(ol) is the section of $2 given by ~p(ox(x)). 

Suppose we wish to investigate in Sh(X),  local properties of continuous 
$2-valued maps on $1. To each open subsheaf U of $1 we associate the 
collection of continuous maps U ~ $ 2 and denote the totality of these sheaf 
maps by Cns($1, $2 ). According to the above theorem this object can be 
characterized by the sheaf A of S2-valued bundle maps over $1, in the sense 
that sections of A over U c S 1 are in one-to-one correspondence with 
continuous sheaf maps U ~ $2- Note that Cns($1, $2) is associated with the 
category Sh(X),  whereas the simpler object A is an object in Sh(S1). We will 
often use this representation and say that Cns(S 1, $2) is represented as A in 
Sh(St). In applications we shall use the following refinement of Theorem 
4.7. 

Proposition 4.8. Let S 1 and S 2 be complex analytic bundles over a 
complex manifold X. Let $1 and $2 be the sheaves of holomorphic sections 
endowed with the bundle topologies. Let U ___ S1 be open. Then there is a 
one-to-one correspondence between (i) continuous sheaf maps ~: U ~ $2 
and (ii) holomorphic bundle maps cp: U ~ S  2. As in theorem 4.7, q~ is 
obtained from ~p by pointwise evaluation along sections in U. 

infinitely many unary relations, one for each open subsort. This has, however, a technical 
drawback: since open sets do not collectively form a sort we cannot write statements in the 
language which quantify over open sets. Thus for example the condition of continuity cannot 
be written in the language unless we admit infinite disjunctions. 
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Proof  (In this proof U, V, etc. will denote open sets of S 1 or S 2 and U, 
V etc. will be the corresponding sheaves of sections taking values in these 
open sets.) Since any holomorphic bundle map is continuous, it follows 
easily from the definition of bundle topologies that the sheaf map q3 
obtained by pointwise evaluation of cp along sections, is continuous. Con- 
versely, given q3: kJ ~ S2, a continuous sheaf map, we construct an associ- 
ated bundle map ~p: U --* S 2. 

We first show that if o l ( x  ) and oz(x  ) are sections in kJ which intersect 
over x 0 ~ X, i.e., ox(Xo) = o2(Xo) in U then the continuity of ~ ensures that 
~ (o l )  and ~(02) also intersect over x o. Thus, suppose that a I = (P(Ol)(xo) 
q3(02)(xo) = a 2. Choose a neighborhood U 1 of a 1 not containing a z. Then 
since ~ is continuous ~- I (U1)  is of the form V 1 for some V 1 c U open. Also 
Ol(xo) ~ V 1 and since 01(Xo) = 02(Xo), a restriction 62 of o 2 is in V 1. Thus 
~(52) ~ U 1 so a 2 ~ U 1 contradicting the construction of U x. Thus a I = a z. 
Now given r~: 19 ~ $2 construct ~ as follows. Let o ~ U be over x ~ X. We 
set  

where o is any section with o ( x )  = v. This gives a well-defined bundle map 
independent of the choice of o (by the above property of q~) and is easily 
seen to be continuous since ~ was. Furthermore the fact that q3 preserved all 
holomorphic sections leads to ~o being a holomorphic bundle map. The 
constructions defined above for ~ and ~ are readily seen to be inverses, 
giving the required correspondence. 

As a final example we make some remarks on the interpretation in 
Sh(X),  of the theory of complex analysis. This will be required since our 
theory of massless fields in the next section will be formulated for holomor- 
phic fields on complexified space-time. 

In mathematics it is usual to construct the complex numbers (and most 
other structures) out of the natural numbers or even the empty set. This 
extreme level of formalization seems to be of little value in the present work. 
In fact, it may be argued that from a physical point of view the ideas of 
discrete and continuous structures are essentially independent concepts. 
Accordingly, we shall seek axioms for a sort C to ensure a rich enough 
theory of complex analysis instead of constructing C as a completion of the 
real numbers. This problem, in the context of  sheaf models, has been 
considered in detail by C. Rousseau (1979) and we quote some of her 
results. The axioms are stated relative to a sort R of real numbers. The sort 
C is required to have operations of addition and multiplication making it a 



Sheaf Models and Massless Fields 85 

field (respecting Remark 4.3). Furthermore C is equipped with a real-valued 
norm. The norm induces a topological structure on C in the usual way. 
Several other completeness and embedding properties relative to R are 
imposed, which we shall not state here since we do not use them explicitly. 
A sort C subject to these axioms is called a complex numbers sort. Rousseau 
shows that for a complex numbers sort we can define contour integration 
and that Cauchy's theorem and integration formula hold for interpretations 
in sheaf models. Holomorphic functions are defined in the standard way: 

Definition 4.9. Let C be a complex numbers sort and U an open 
subsort. Then a map f :  U ---, C is holomorphic with derivative g: U ---, C if 
the following sentence holds: (Vx  ~ U) (Ve  > 0)(38 > 0)(Vz' ~ U)(Iz - z '  I < 
8 ~ [ f ( z ' ) - f ( z ) - g ( z ) ( z  - z')[ < elz - z'[). (Here e and ~ are of sort R.) 
The basic result we shall use is the following. 

Proposition 4.10. (Rousseau, 1979) Let X be a complex manifold. Let Q 
be the sheaf of holomorphic functions on X. Then in Sh(X), O satisfies all 
the axioms of a complex numbers sort (with the obvious algebraic opera- 
tions and norm; here R is interpreted by the sheaf of continuous real-valued 
functions on X). Furthermore the local holomorphic functions [in Sh(X)] 
on O are represented on X • C as the sheaf of holomorphic functions (in 
sets), i.e. For 19 __ O open in Sh(X), the holomorphic sheaf maps r 19 ~ O 
are exactly those obtained by evaluating holomorphic maps r U ---, C along 
the sections of U. 

Complex manifolds are defined in terms of a structure of holomorphic 
functions: 

Definition 4.11. Let C be a complex numbers sort. 
A complex manifold M of dimension n is a topological space M with a 

sheaf O M of C-valued functions, called holomorphic functions satisfying the 
following: (a) If f l  . . . . .  fk ~ OM(U) and r C k ~  C is a holomorphic func- 
tion (in the sense of 4.9) then r . . . . .  f k )  ~ OM(U)" (b) There is an open 
cover U, of M and homeomorphisms #i: U / ~  V/with V i open subsorts of C" 
(called local coordinate systems) such that the holomorphic functions on U~ 
are isomorphic to the holomorphic functions on V~ via composition with #~. 

Combining Propositions 4.8 and 4.10 gives the following. 

Proposition 4.12. Let X be a complex manifold. Let the sheaf O of 
holomorphic functions on X be the interpretation of a complex numbers 

sort in Sh(X). Let Y be a complex manifold with Y p X a surjection whose 

fibers all have complex dimension n. Then the sheaf Y, of holomorphic 
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sections of p is a model of an n-dimensional complex manifold in Sh(X). 
The sheaf of holomorphic functions on u [in Sh(X)] is represented on Y as 
the sheaf of holomorphic functions on the complex manifold Y (in sets). 

5. T H E  THEORY OF MASSLESS FIELDS 

We set up a first-order many sorted language suitable for formulating 
the theory of analytic massless fields on complexified Minkowski space. In 
Section 6 we will be concerned with interpreting the theory in a sheaf 
category. The language and theory can be formulated in many (inequiva- 
lent) ways. Our choice is guided by the aim of relating the interpretational 
structures to the formalism of twistor theory, and follows Penroses spinor 
formulation of massless fields (Penrose 1968, to appear). 

The language has four basic sort symbols denoted C, M, S A, $4' which 
will denote, respectively, the domains of complex numbers, complex 
Minkowski space, unprimed spinors, and primed spinors. All other sorts 
that we use are constructed out of these. The sort C is subject to all of 
Rousseau's (1979) axioms for a complex numbers sort. M is required to be a 
topological space and a complex manifold (via Definition 4.11) relative to 
C. The local Lorentz structure of M will be expressed axiomatically later in 
terms of a relation between M and the spin spaces. 

S A and S A, are subject to the axioms of a vector space over C, with 
complex manifold structures making the algebraic operations holomorphic 
maps. The expression of SL(2, C) action will be expressed in an unusual 
way, peculiar to sheaf models, and we leave the discussion of this until 
Remark 6.12. In effect the covariance property is partly built into the actual 
structure of the model and its logic, rather than being imposed axiomati- 
cally, so it appears at a more fundamental level than is usual. Also (related 
to this) we shall not require that both spin spaces be two dimensional, and 
later, allow the possibility that S A, be one dimensional. Consequently the 
skew two-index primed spinors usually used for index raising and lowering 
operations are no longer isomorphisms and we need to take more care with 
the axiomatics of primed spinor algebra manipulations [cf. Definition 1.3 
(ii)]. The full spinor algebra is defined in terms of C, SA, SA, in the usual 
way: 

Definition 5.1. S A and S A' are defined to be the C-linear duals of S A 
and SA,, respectively (these are defined as subsorts of the function space 
sorts C sA and cSA'). Spin space sorts with more than one index are defined 
as tensor products of the one-index sorts. 
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The local spinor structure of M is expressed as follows. We first 
axiomatize the sheaf Der of derivations of the holomorphic functions O M on 
M, i.e., to each open subsort U of M we associate a sort of functions 

~: O M ( U )  --, O M (U)  satisfying 

(Vf)(Vg)(~(f + g) = ~ ( f ) +  ~ (g ) )  

(Vf)(Vg)(~(f. g) = ~(f) .g + f. ~(g) 

(Vc ~ C) (Vf  ~ O M ( U ) ) ( ~ ( c f  ) = c~(f)) 

Also let the sort symbol $AA" denote the sheaf of holomorphic SAA'-valued 
functions on M. Then as part of the axiomatic structure of the sort M we 
shall require an Ou-linear injection 

--: S AA''--~ Der 

This axioms differs from the one usually used in that -- is normally required 
to be an isomorphism. The stronger axiom also leads to some interesting 
models (cf, Jozsa, 1981) but the above weakening is necessary to allow 
models which are related to twistor theory in a simple way. Given the 
injection -- we can define a spinor covariant derivative (cf. Penrose, 1968). 

Definition 5.2. A spinor covariant derivative is a map VAA': S::: '--' 
SZAA, with 
(a) v (~oZ + q,Z) = v ~ Z  + vq~Z. 
(b) V(~Z,PZ)  = ~ ZV,PZ  +(VepZ)q~:::. (where there may be any number 

of contractions between ~Z and q,Z). 
(c) V,4,4'VBB'er = VOO'V,4,4'~ for any holomorphic function % 
(d) For any open subsort U o f  M and any VAA'~ SAA~U), ~p E OM(U ) we 

have --(VAA')q0 = VAA'(VAA'~). 

Given all this syntactical structure we now define massless fields and 
potentials exactly as in Definition 1.3. However we emphasize that in 
Section 1 this definition was referring to the usual model structures in sets. 
Here, the statements are regarded as purely syntactical sentences in our 
language and do not refer to any model theoretic structures. 

Similarly we can transcribe into our language the two statements of 
Theorem 1.5. It can be shown that Theorem 1.5 is a valid logical conse- 
quence of the axioms we have set up in this section. Furthermore this logical 
deduction can be carried out using only the laws of intuitionistic logic 
(rather than full classical logic). The proof (cf. Jozsa, 1981) involves exarnin- 
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ing the (long) classical proof of this theorem and noting that, with minor 
modifications, all the steps are, in fact, intuitionistically valid. This is an 
important observation since the laws of intuitionistic deduction are valid in 
all sheaf models. Hence any sheaf model which satisfies the (relatively 
simple) axioms imposed on C, M, S A, SA, will automatically be a model of 
the (relatively complicated) two statements in Theorem 1.5, i.e., the interpre- 
tations of these two statements in any such sheaf model will be guaranteed 
to yield sequences of sheaves, known to be exact, without any further work. 

6. A SHEAF MODEL FOR THE THEORY OF MASSLESS 
FIELDS 

It is clear that the theory of massless fields outlined in Section 5 has a 
standard model in the category of sets which reproduces all of the familiar 
structures of fields on space-time. In this section we shah develop a sheaf 
model of the theory in the category of sheaves over S 2 and show that it is 
related to the twistor description. 

S 2 is the two real-dimensional sphere, and also possesses a unique 
structure of a complex manifold isomorphic to the complex projective line. 
In setting up the model it will be useful to think of this base space (for 
reasons given later) as the projective primed spin space of the usual set 
based model. To facilitate computations we introduce homogeneous coordi- 
nates rr A, ~ C 2 on the sphere S z. The Lorentz covariance properties of this 
spinor will not be used in setting up the model and will enter only later 
when discussing the Lorentz covariance properties of the model. Thus, ~r A, 
for the time being is just a convenient way of referring to a pair of complex 
numbers. 

We denote by O(0) the sheaf of holomorphic functions on S 2, and by 
O(n) (n an integer) the sheaf of holomorphic functions homogeneous of 
degree n. In terms of homogeneous coordinates, a section of O(n) is a local 
function f(~r A,) satisfying ~r A,(a/a~r A,)f = nf(~r A,). Alternatively, O(n) is the 
sheaf of holomorphic sections of the nth twisted line bundle on S 2, i.e., the 
line bundle of Chern class n. If $ii~ is a spin space of the set based model 
then we denote by Oiii(n) the sheaf on S 2 of holomorphic functions of 
degree n with values in $iii. 

The model has the four basic sorts interpreted as shown in Table IV. 
All four sheaves in Table IV are sheaves of holomorphic sections of complex 
fiber bundles over S 2. According to Proposition 4.12 they therefore all have 
natural complex manifold structures in Sh(S2). The algebraic operations on 
the interpretations of C, SA, SA, are all taken to be the usual pointwise 
operations on sections (regarded as local functions on S z) and according to 
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TABLE IV 

Sort s Interpretation M ( s )  in Sh(S 2) 

C 
SA 
S~, 
M 

o(0) 
oA(0) 
o(1) 
M, the sheaf of holomorphic 

sections of C M  X S 2 --* S 2, where 
C M  is the usual set model of 
complexified Minkowski space 

Remark 4.60A(0 ) and O(1) are vector spaces over O(0) in Sh(S2). By 
Proposition 4.10 O(0) satisfies the axioms for a complex numbers sort. 

Remark 6.2. The interpretations of C, S A, and M are all just the usual 
set based model structures parameterised holomorphically by the base space 
S 2, i.e., they are all sheaves of holomorphic sections of the product bundles 
A • S 2 ~ S 2, where A is the corresponding standard set based model. The 
interpretation of SA, is perhaps the most intriguing feature of the model and 
leads to its interesting properties. Note that according to Proposition 4.4 
(and Remark 4.6) OA(0 ) is tWO dimensional over O(0), whereas O(1) is only 
one dimensional. It is especially interesting that the base space S 2 can be 
thought of as supplying the "missing" dimension in the following way. 
According to the rules of interpretation the "completely defined elements" 
of a sheaf are the global sections. O(1) has a C 2 family of global sections: in 
terms of our homogeneous coordinates on S 2 each global section is given 
explicitly by f ( ~ r A , ) = o t A ' r r A , , O t A ' ~ C 2 .  E a c h  such section vanishes at a 
unique point of S 2 given by rr A, = aA,, and, given this point of S 2 the family 
of sections vanishing here is the projective equivalence class of global 
primed spinors { kfQr) = kaA%rA,, k ~ C}. Thus we get a canonical identifi- 
cation of the points of the base space and the global projective primed 
spinors in the model. This peculiar way of representing part of the structure 
of the theory in the base space is not available in set models where the base 
space (the one-element set) is too small to carry any interesting structure. 

We compute next the interpretations of spin spaces with arbitrary 
index structures. 

Proposition 6.3. The dual spin spaces are given by M(SA)=oA(o)  
M(S  A') = O( - 1). 

Proof. The dual spaces are constructed as spaces of C-linear function- 
als, regarded as subspaces of the full functions space sorts. From the 
interpretation of function space sorts in sheaf models given in Section 3 we 
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see that the sections of M(S A) over U _ S 2 are O(0) linear sheaf maps from 
OA(0)I U to O(0)1 u. Since all algebraic operations are pointwise it readily 
follows that the only such linear maps are given by contraction with a 
section of OA(0) over U, i.e., the sections of M(S A) over U are isomorphic 
to the sections of 0'4(0) over U. Similarly we identify M(S A') as O ( -  1). 

Proposition 6.4. 

M( SA,s, ) = 0(2)  = M( S(A,8,, ) 

M( S A'8') = O ( -  2) = M( S (A'8,)) 

M(S AB)=OAs(O) M(SAB )=0,8(0 ) 

u(s ,* '"' , )  = M ( s , . . . . , ) =  o 

(-AI...A.B~...B" p ) ~Av..A~. 
In general M 5C,...CmD~...D; = UC,...c ~q--  p) .  

Proof. Spaces with more than one index are constructed as tensor 
products of the one-index spaces. We characterize tensor products axiomati- 
cally by the usual universality property with respect to C-multilinear maps 
(cf. MacLane and Birkhoff, 1967). This construction interprets in Sh(S 2) as 
the familiar tensor product of sheaves of modules over O(0) and all of the 
listed identifications follow immediately. The operation of outer multiplica- 
tion is just the tensor product map in the above constructions, i.e., the 
pointwise outer multiplication of sections. The operation of contraction, 
defined by the action of spaces on their duals is also just multiplication of 
sections, with contractions over unprimed indices. Note also that since O(1) 
is one dimensional over O(0), tensor powers of M(SA, ) are automatically 
symmetrized and all spin spaces with skew primed indices vanish in the 
model. 

Remark 6.5. In classical spinor algebra there is a theorem that any 
symmetric spinor is the symmetrized outer product of one index spinors. 
This theorem is, in fact equivalent to the fundamental theorem of algebra 
(Penrose and Rindler, to appear). It is interesting to note that this property 
does not necessarily hold in sheaf models as a result of the intuitionistic 
failure of the fundamental theorem of algebra. Thus, if we have a complex 
polynomial of degree n whose coefficients are parameterised holomorphi- 
cally, by say, t, then although it can be solved to give n roots at each value 
of t we cannot in general construct the roots to vary holomorphicaUy with t 
[cf. Jozsa (1981) for an explicit spinor example]. 
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To identify the interpretation of the spinor derivative ~TAA' we need to 
construct the interpretation of the derivations of holomorphic functions on 
M. Let F b e  the total space of the bundle CM • S z -+ S 2 (cf. Table IV entry 
for M). We introduce coordinates x AA" on CM so that F has coordinates 
(x AA', rrA, ). According to Proposition 4.12 the interpretation of the sheaf of 
holomorphic functions on M in the category Sh(S 2) can be represented as 
the sheaf of holomorphic functions on F. We denote this sheaf by F(0). 
More generally we write FIZ(n) for the sheaf on F of local holomorphic 
f u n c t i o n s f Z / x  AA', rrA, ) taking values in the spin space SZI (of the model in 
sets) and being homogeneous of degree n in the rr A, coordinate. 

Proposition 6.6. The derivations of O M are represented on F as the 
sheaf of maps of the form vAA'(X, ~r)(O/OxAA'): F(O) ~ F(O), where uAA'(x, "n') 
is homogeneous of degree 0 in %4,, i.e., the derivations are represented on F 
as FAA~o). 

Proof. The representation of O M as F(0) on F preserves addition and 
scalar multiplication of functions so derivations of O M are represented on F 
as derivations of F(0). In coordinates, these all take the form 

ax,A" O~A," 

However, the derivations are required to be O(0) linear in Sh(S2). On F this 
amounts to the condition that the derivations vanish on F,,(0)c_ F(0), the 
subsheaf of functions which are constant in x AA'. This is equivalent to 
requiting that fA' be zero in the above expression. Finally the homogeneity 
of oAA'(x, 'T[) is necessary to guarantee that the derivations take values in 
F(O). 

In the model, the interpretation of S AA" fields on M, when represented 
on F, gives the sheaf FA(--1). There is a natural injection 

FA(--I)~FAA~o) 

f A ( x ,  lr) ~ fA1rA' 

which we use as the interpretation of the map --- appearing in Definition 5.2. 
The derivations obtained from S An" fields via 5.2 (d) are all of the form 

,,)----L-a = f .  ,,) 
OXAA ' OXAA ' 

This identifies M(XTAA,): M(SZI) ~ M(SZIAA,) as the operator (when all 
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function spaces are represented on F )  

0 
~ r A ' - -  : F::: (n) -+ F:::A(n +1)  

OxAA" 

Collecting together all the above constructions and remarks lead to the 
following. 

Theorem 6. 7. The interpretation given in Table IV with the subse- 
quent definitions of analytic structure and the interpretations of ,E 
and VAA, provide a model for the theory of massless fields in the 
category Sh(S2). 

Next we construct the interpretations of massless fields themselves and 
of the sequences in Theorem 1.5. 

Theorem 6.8. (a) A local function on M satisfying 

VAA,(pA'...t:= 0 ( n symmetric indices A' . . .  L') 

(i.e., a positive helicity massless field) interprets in the model, 
represented on F, as a local twistor function homogeneous of 
degree - n. 

(b) A local function on M satisfying VX(X'~A'...L'~= 0 (n 
symmetric indices A' . . .  L') interprets in the model, represented on 
F, as a local twistor function homogeneous of degree n. 

Proof. For (a) we note that S (A'L') valued fields are represented on F 
as F ( -  n) and the operation VAA, with a primed contraction is simply the 
application of ~rA'O/OX AA" SO the interpretation of the field equation is 

rr A, 0 x ~r) 0 
cgxAA,f( ' = 

i.e., f is a twistor function. (b) is similar. 
Let T(n) c F(n) denote the sheaf on F of twistor functions homoge- 

neous of degree n. 

Theorem 6.9. The sequence in Theorem 1.5 (a) (regarded as a 
statement in the language of Section 5) interprets in the sheaf 
model (and represented on F )  as the following sequence: 

~A~( O // OxAA" ) ~,A'( o // OxA'[B ) 
0 ~T(n) ~F(n) ~ FA(n +I ) ~ F(n+2) ~0, 

n<~ - 2  
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Proof. The interpretation of the first term is given in Theorem 6.8 (a) 
and the remaining three terms involving free holomorphic functions can 
easily be identified using Proposition 4.12. In the last term we have used the 
fact that M(SA) is two dimensional to identify FIA~I(n ) with F(n). 

Theorem 6.10. The sequence in Theorem 1.5 (b) (regarded as a 
statement in the language of Section 5) interprets in the model as 

~,Ai O/OXA'4" ) 
0 --) T ( n )  '-) F(n)  ~ GA(n + 1) --, O, n>~O 

where GA(n + 1) c FA(n + 1) is the subsheaf on 
satisfying 

~A'VA,tA g nl(X, ~)  = 0 

F of functions 

This sequence can be extended at the right-hand end to give the 
exact sequence 

. . , , ~ ' ( a / a x  A~') . , , ~ ' ( a / a x  ~ ' t s )  
0 ~ T(n)  ---, F(n)  ~ FA(n +1 ) ~ F ( n + 2 ) ~ 0  

Proof. The identification of the terms T(n) and F(n) is similar to 
Theorems 6.9 and 6.8. The equation defining GA(n + 1) _C FA(n + 1) is easily 
verified to be the interpretation in the model (and represented on F )  of the 
field equation for potentials in Definition 1.3 (iii). The final term in 
sequence 1.5 (b) involves skew primed spinors and is therefore zero in the 
model. The sequence can be extended in the designated way iff the map 
rrA'(O/axA'[B): FA(n + l ) ~ F ( n  +2) is surjective. This is, in fact, a true 
statement about sheaves on F, i.e., about structures in the model. Better still, 
surjectivity can be stated purely syntactically, in the language, and is exactly 
the interpretation in the model, of the statement that 

XTAtA" : S~B'...V) -+ $(A'...V) is surjective (6.11) 

It may be shown (cf. Jozsa, 1981) that if the spin spaces S A, S A" are required 
to be either one or two dimensional (in the sense of Proposition 4.4) then 
the statement 6.11 is an intuitionistically valid deduction from the axioms of 
the theory. Thus any model satisfying these dimensionality axioms (e.g., 
our model) will automatically be a model of 6.11 and the required extension 
of the sequence follows immediately. 
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Theorems 6.8, 6.9, and 6.10 are the main results showing that the 
conventional spacetime description of massless fields and the basis of the 
twistor description are both obtained by interpreting a single theory of 
massless fields in two different sheaf categories [i.e., Sets and Sh(S2)]. 

The case n = - 1  for the sequence 1.7: 

0 - - . T ( - 1 ) - - - , F ( - 1 ) - - . F A ( 0 ) - - - , F ( 1 ) - - . 0  

does not appear in the interpretations given by Theorems 6.9 and 6.10. This 
sequence arises as the interpretation in the model of the following sequence 
written in the language: 

O ....., z A , ..~ s A , "U.4.4" V A'I B --, SA --, SA,--'0 

This sequence is not exact when SA, is two-dimensional. However, it is exact 
when S A, is one dimensional. Thus, since in our model, M(SA, ) is one 
dimensional, the exactness of this case, n = -  1, follows again by model 
theoretic arguments. 

Remark 6.12. We have left the discussion of Lorentz covariance prop- 
erties of the model to this late stage since its proper expression requires a 
generalization of the definition 1.1 of sheaf, as outlined below. A naive 
approach would require an SL(2, C) action pointwise along the sections of 
the sheaves interpreting the spin spaces. However, in view of Remark 6.2 
this will not give a satisfactory group action on primed spinors which are 
partly represented in the base space. Evidently, the group action cannot be 
expressed by sheaf maps (since these always leave the base space fixed). 
Hence the group action is not expressed syntactically in the language but 
instead built, at a more fundamental level, into the structure of the model. 
These considerations motivate the following definitions. 

Let X be a topological space and G a transitive group of homeomor- 
phisms of X. For each g ~ G and U _c X open we have a map 

gu: U-~ gU 

with gU c_ X open being the image of U under the action g. Let Op(X, G) 
be the category whose objects are the open sets of X and arrows are 
obtained by closure under composition of inclusions of open sets and the 

maps gu for all g ~ G ,  U _ X  open. Note that any arrow U - ,  V in 

Op( X, G) can be decomposed as 

cPl ~o 2 
v (2) 
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where W is the image of cp, tpl is of the form gu for some g ~ G, and ep2 is 
the inclusion of the image of ~o in V. Also, gv: U ~ W is an  isomorphism, 
with inverse h w, where h is the inverse of g in G. 

We define a cover of an open set U to be a family of arrows {6,: 
U~ ---, U } of Op( X, G) which are jointly epimorphic, i.e., U is the union of 
the images of the 6,. Given any such cover we can construct the pullback 

G 
U s. ~ U,.j ~ U/of (8i,8j) as follows: 

E i 

~j I $ 8i commutes and 
U 

U,j = I mage(6 i ) n I mage(6j). I f according to (6.13) we decompose each 8, as 

f, 
U, ~ Image(8 i ) ~ U 

and let k~ be the inverse off , ,  then the map e~ is given by the composite 

k t 

Uij ~ Image( 8 i ) ~ U i 

This construction is (up to isomorphism) the natural analog in Op(X, G), of 
forming intersections of open sets U~, ~ ___ U in Op(X). [It is, in fact, an 
explicit description of the category theoretic pullback; cf. MacLane and 
Birkhoff (1967). 

Definition 6.14 

A G-equivariant sheaf on X is an assignment of a set $(U) to each 
s 

object of Op(X,G) and for each arrow U ~  V in Op(X,G), a map 

S(f) 
S(V) ~ S(U ) (a "generalized restriction map") satisfying the following. 

(i) If 

h 
U--* W 

[ V g  

in Op ( X , G )  has g o f =  h, then $(h)  = $ ( f ) o S ( g ) :  $ (W)  ~ $(U). 
Ej ~1 

(ii) Let { 8i: U / ~  U} be a cover of U and let Uj ~ U/j---, U/ be the 
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pullback of (3i,8j). Let o; ~ S(U~) be a collection of elements such that 
$(ei)(oi) = $(ej)(oj) for all i , j .  Then there is a unique o ~ $(U) with 
oi = $ ( 3 / ) ( o ) .  

Note that Definition 6.14 parallels exactly Definition 1.1 except that 
the group G has been introduced to extend the notion of inclusions of open 
sets. The factorization (6.13) leads readily to a simpler description: it is 
sufficient that the completeness condition 6.14 (ii) hold only for coverings 
which do not include any group maps, i.e., only for the coverings of 
Definition 1.1. 

Proposition 6.15. $ is an equivariant sheaf over Op(X, G) iff (i) the sets 
$(U) form a sheaf over Op(X) (in the sense of Definition 1.1) and (ii) for 
each map gu: U ~ V  in Op(X,G) there is a map S(gu): $ ( V ) - ~ S ( U )  
satisfying all the composition conditions of Definition 6.14 (i). 

Remark 6.16. It is shown in Johnstone (1977) and in Makkai and 
Reyes (1979) that the category of equivariant sheaves is rich enough to 
support model theoretic interpretation rules like those given in Section 3, 
which also respect intuitionistic logical deductions. In fact, both sheaves 
(Definition 1.1) and equivariant sheaves (Definition 6.14) are special cases 
of the more general notion of Grothendieck sheaves described at length in 
the above-mentioned references. 

The notion of equivariant sheaves provides a natural solution to the 
problem of expressing the Lorentz covariance properties of our model. 

The group SL(2, C) acts on S 2 by homeomorphisms which are easily 
described in terms of the homogeneous coordinates rrA,= (z 0, zl): Let 

(• : ) ~ S L ( 2 ,  C). Then the action is 

In the index notation we write the matrix (;  •)as L~: and the action 

becomes 

Note that this map is homogeneous of degree one so composition with a 
homogeneous function of ~r A, preserves homogeneity. 

All of the sheaves used to interpret the spin spaces have natural 
SL(2, C) equivariance structures. OA(0 ) and O(1) are made into SL(2, C) 
equivariant sheaves (cf. Proposition 6.15) as follows. Let U c S 2 be open 

I 
and 1 = L~; ~ SL(2, C) so that U--  IU is an arrow in Op(S 2, SL(2, C)). Let 
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f(~rA,),~r A, ~ IU be a sect ion of O(1) over  IU. Then  the res t r ic t ion o f f  a long l 
is given by  

f(~rA,)~f(L~:oB, ), o.,~U 

Let  gA(rtA,) be a sect ion of  OA(0 ) over  IU. The  res t r ic t ion of  gA along / is 
given by  

g A ( r r A , ) ' E ~ g , ( L ~ : t ~ B , ) ,  o B , ~ U  

(here/_~ denotes  the complex  conjuga te  of  L) .  This  equivar iance  s t ructure  
can  be s imi lar ly  def ined  for  all the sheaves in te rpre t ing  the spin  space sorts. 
In  fact  we could  have set up our  ent i re  mode l  in the ca tegory  of  equ ivaf ian t  
sheaves,  at  the expense  of  some t r anspa rency  of  presenta t ion .  
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